Exercise 25

Solve the boundary-value problem, if possible.

$$
y^{\prime \prime}+16 y=0, \quad y(0)=-3, \quad y(\pi / 8)=2
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad y^{\prime}=r e^{r x} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
r^{2} e^{r x}+16\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+16=0
$$

Solve for r.

$$
r=\{-4 i, 4 i\}
$$

Two solutions to the ODE are $e^{-4 i x}$ and $e^{4 i x}$. By the principle of superposition, then,

$$
\begin{aligned}
y(x) & =C_{1} e^{-4 i x}+C_{2} e^{4 i x} \\
& =C_{1}(\cos 4 x-i \sin 4 x)+C_{2}(\cos 4 x+i \sin 4 x) \\
& =\left(C_{1}+C_{2}\right) \cos 4 x+\left(-i C_{1}+i C_{2}\right) \sin 4 x \\
& =C_{3} \cos 4 x+C_{4} \sin 4 x .
\end{aligned}
$$

Apply the boundary conditions to determine C_{3} and C_{4}.

$$
\begin{aligned}
y(0) & =C_{3}=-3 \\
y\left(\frac{\pi}{8}\right) & =C_{4}=2
\end{aligned}
$$

Solving this system of equations yields $C_{3}=-3$ and $C_{4}=2$. Therefore, the solution to the boundary value problem is

$$
y(x)=-3 \cos 4 x+2 \sin 4 x .
$$

Below is a graph of $y(x)$ versus x.

